

Evaluating the Least Cost Selection of

Agricultural Management Practices in the

Fort Cobb Watershed

Solmaz Rasoulzadeh*, Arthur Stoecker Daniel E. Storm *PhD student, Biosystems and Agricultural Engineering Oklahoma State University

2017 Oklahoma Clean Lakes and Watersheds Conference Apr. 5, 6, 2017

Outline

- Introduction
- Problem Statement
- Objectives
- Study Area and Methodology
- Results
- Conclusion
- Future Research
- Acknowledgement

Introduction

- Main cause of water quality impairment in the USA is due to human induced Non-Point Source Pollution
- Contamination of surface water and groundwater also puts drinking water resources at risk

Problem Statement

Southern Great Plains of the United States

- Stressing the landscape
- Increasing uncertainty and risk in agricultural production
- Impeding optimal agronomic management of crop,

pasture, and grazing systems

(Garbrecht, et al., 2014)

Wishart, 2004

- Watersheds located in this region issues of NPS pollution
- Impaired by turbidity and phosphorus
- Too much sediment in water leads
 - taste and odor problems
 - reduced aquatic animal food
 - increased dredging cost.

Problem Statement

Upland areas (farms and fields) erosion

□ Streams and waterways erosion

Rill erosion and amount of upland
 sediment loading to and erosion in
 ephemeral channels

Management Practices

- Contour
- Conservation tillage
- Strip cropping
- Pond
- buffer strip
- small check dam
- Changing tillage systems
- Replacing cover crop with grass
- Avoiding overgrazing
- Conservation tillage
- grassed waterway

Objective

Evaluating the Least Cost Selection of Agricultural Management Practices

in the Fort Cobb Watershed

Specific objectives:

- Calibrate and validate a hydrological model
 - Surface runoff
 - Crop yield
 - Sediment load
- Generate different scenarios
- Evaluate economically and ecologically sound BMPs

Study Area

Fort Cobb watershed

located in west-central Oklahoma, United States
rural agricultural catchment
issues of NPS pollution (suspended solids, siltation, nutrients (N, P), and pesticides)
Watershed area is 813 km²

Study Area

Legend

CORN

GRASS

WHEAT RYE

HAY

WATER URBAN

FOREST

Land Cover within the watershed

United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS)

Process of the project

Developing hydrological model:

SWAT model

Soil and Water Assessment tool (SWAT) => develop the hydrological model => the

amount of water and sediment yield, crop yield

Data	Data source
Elevation	10 m USGS Digital Elevation Model
Soil	Soil Survey Geographic Database- SSURGO soil data
Land use	US Department of Agriculture crop layer, national Agricultural Statistics Service (NASS)
Slope	Manually classified into 4 classes
Weather data (precipitation, temperature, wind speed, relative humidity, and solar radiation)	USGS weather stations, MESONET, airport values
Water bodies (ponds)	U.S. Army Corps of Engineers National Inventory of Dams (NID).

SWAT model

serious erosion

- Contour and terraces farming implementation in baseline scenario
- Practice of plowing and/or planting across a slope \rightarrow create a water break \rightarrow reduces the formation of rills and gullies during times of heavy water run-off \Rightarrow reduces soil erosion
- Soil conservation practice applied to prevent rainfall runoff on sloping - land from accumulating and causing

https://www.slideshare.net/suryavee r/soil-erosion-and-soil-conservation

Require high capital investments

- Recommended in the western gently sloping part of the Oklahoma state
- One of the most cost efficient BMPs in farmlands
- They are already implemented in some parts in the watershed **preventing reinvestment**

SWAT model

Modeling Contours and Terraces that are already implemented in the watershed

 By writing a code in VB, CN and P-factor changed in HRUs where more than 65% of them were implemented by terraces and/or contour to see them in baseline scenario (Winchell et al., 2013)

SWAT model calibration and validation

- Streamflow and sediment
 - Calibration: 1991–2000
 - Validation: 2001–2010
- Crop yield and monthly USGS observations of streamflow and suspended sediment concentration in Cobb Creek near Eakely gage (USGS 07325800)
- Statistical matrices:
 - coefficient of determination (R²)
 - Nash-Sutcliffe efficiency (NS)
 - percentage bias (PB)

Scenarios

Wheat, Cotton, Grain Sorghum

Conventional tillage

No-till

Contour + Conventional tillage

Contour + No-till

Pasture

SWAT model calibration and validation (USGS 07325800)

Calibration of streamflow

- Warm up time period: 1987-1990
- Calibration time period: 1991-2000
- [•]R² = 0.64
- **NS** = 0.61
- ■PB = <1

Validation of streamflow

- Validation time period: 2001-2010
 R² = 0.79
- ■NS = 0.75
- ■PB = <1

Calibration of crop yield

 County level (for Caddo, Custer, and Washita) NASS data for the years 2001 to 2015 (USDA, 2015)

14

SWAT model calibration and validation (USGS 07325800)

Calibration of sediment

- Warm up time period: 1987-1990
- Calibration time period: 1991-2000
- [•]R² = 0.35
- •MNS = 0.37
- ■PB = <20

Validation of sediment

- Validation time period: 2001-2010
- ■R² = 0.38
- ■NS = 0.47
- ■PB = <40

Since there were some gaps in observed sediment data, we were not able to adequately calibrate SWAT for sediment concentration.

- Scenarios
- Baseline:

Legend

Toeal Sediment Loading (ton/ha)

3.5 3 2.5 2 1.5 1 0.5 0 contour conventional Tillage contour Notill Conventional tillage Notill Baseline Practice

Convert croplands (except Hay and Alfalfa) to wheat

Convert croplands (except Hay and Alfalfa) to cotton

Total Sediment Loading (ton/ha)

Toeal Sediment Loading (ton/ha)

Convert croplands (except Hay and Alfalfa) to grain sorghum

17

Economic Analysis

Linear programming was used to identify the most cost-effective combination of management practices maximizes revenue of producers while insuring sediment from the watershed does not exceed a specified target (using GAMS)

SWAT crop yield, surface runoff, and sediment loads

- Revenue
- Costs: Crop budget, sediment abatement
- The objective function: Net Farm Income in the Watershed,

Maximize $\Sigma_{hru} \Sigma_{bmp}$ NR _{bmp hru} * Ha _{bmp hru}

- Subject to:

 Σ_{bmp} Ha $_{bmp}$ < Hectares in Hru

 $\Sigma_{hru} \Sigma_{bmp}$ Sed $_{bmp hru} * Ha_{bmp hru} \leq Watershed Sed. Target$

economic analysis

Estimated Sediment Loss Occurring after Market Solutions

Sediment yield from each crops hrus transported to main channel mt/ha (SYLD mt/ha)														
		Cotton			Grain Sorghum			Wheat						
abatement cost (\$)	Slope Classes (%)	Contour + No till	No till	Total	baseline	Conventional Tillage	Total	baseline	Contour + No till	Contour + Conventional Tillage	Conventional Tillage	No till	Total	Sediment reduction (%)
0	0-2		72.3	72.3	16.5	6.2	22.6	17.7			29.2		46.9	
	2-4		228.5	228.5	54.2	21.5	75.8	62.7			114.2		176.9	
	4-6		557.5	557.5	135.3	40.3	175.6	135.4			238.4		373.8	
	6-9999		1517.5	1517.5	258.2	90.4	348.6	369.4			646.8		1016.2	
	Total		2375.7	2375.7	464.2	158.4	622.6	585.2			1028.6		1613.8	
50	0-2	11.1	46.7	57.9	14.3	5.9	20.2	11.8	5.3	1.1	19.6	3.2	41.0	16.1
	2-4	28.8	140.2	168.9	40.4	17.1	57.5	27.2	22.4	8.8	53.2	26.0	137.7	24.3
	4-6	66.8	324.1	390.9	99.3	27.9	127.1	29.4	79.6	23.3	68.4	39.9	240.5	31.5
	6-9999	251.9	771.1	1023.0	161.5	54.8	216.4	67.5	255.2	33.3	195.9	73.7	625.7	35.3
	Total	358.6	1282.1	1640.7	315.6	105.6	421.1	135.9	362.5	66.5	337.1	142.9	1045.0	32.6
100	0-2	11.7	36.6	48.3	12.1	5.0	17.1	9.3	9.2	1.8	14.4	4.1	38.8	26.5
	2-4	42.1	85.0	127.1	30.7	12.2	42.8	11.3	47.6	11.6	23.9	21.7	116.1	40.5
	4-6	84.7	185.8	270.5	71.4	11.5	82.9	19.1	125.8	13.6	37.3	34.6	230.3	47.3
	6-9999	187.5	526.1	713.6	116.8	40.2	156.9	37.8	335.1	25.2	126.6	95.1	619.8	48.3
	Total	326.0	833.5	1159.5	230.9	68.8	299.8	77.4	517.7	52.1	202.2	155.6	1005.0	46.6

40% sediment reduction

Crop	Area (ha)	Cover (%)		BMP	Area (ha)	(%)
Pasture	4624	40.9		Reduced-Tillage	7321.9	64.8
Wheat	3509	31		Contour	2166.6	19.2
Cotton	1757	15.5		+ NoTill		
Grain Sorghum	468	4.1	usź			
Нау	114	1	ntou	NoTill	1485.6	13.1
Alfalfa	34.7	0.3	ntou Till duc	Contour +	304.4	2.7
Other Crops	799	7.1		ReducedTillage		
Total	11305.9	100		Total	11305.9	100.0

Future Research

Ongoing research

- Rotation for no-till wheat:
 - Wheat-cotton, wheat-grain sorghum, wheat-canola
- Terrace repairs
- Suggesting the most cost efficient BMPs for reducing NPS pollution in each hru in the watershed

Acknowledgement

- Dissertation committee: Dr. Arthur Stoecker and Dr. Daniel E. Storm
- Funding provided by the USDA NIFA national Integrated Water
 Quality Program Project #2013-51130-21484
- Department of Biosystems and Agricultural Engineering, Agricultural Economics, Oklahoma State University
- USDA-ARS Grazing lands Research Laboratory, El Reno, OK

References

- Nair, S. S., King, K. W., Witter, J. D., Sohngen, B. L., & Fausey, N. R. (2011). Importance of Crop Yield in Calibrating Watershed Water Quality Simulation Tools1.
- Eawag. 2009. SWAT-CUP. Dübendorf, Switzerland: Swiss Federal Institute of Aquatic Science and Technology. Available at: <u>www.eawag.ch/organisation/abteilungen/siam/software/</u> swat/index_EN.
- Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. *Water resources research*, 35(1), 233-241.
- Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., Srinivasan, R. & Reichert, P. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. *Journal of hydrology*, *333*(2), 413-430.
- Rostamian, R., Jaleh, A., Afyuni, M., Mousavi, S. F., Heidarpour, M., Jalalian, A., & Abbaspour, K. C. (2008). Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. *Hydrological Sciences Journal*, *53*(5), 977-988.
- USDA. 2008. National Agricultural Statistics Service Database. Washington, D.C.: USDA National Agricultural Statistics Service. Available at: www.nass.usda.gov. Accessed on [2010-05-20].
- White, M. J., Storm, D. E., Busteed, P. R., Stoodley, S. H., & Phillips, S. J. (2009). Evaluating nonpoint source critical source area contributions at the watershed scale. *Journal of environmental quality*, 38(4), 1654-1663.

Thank you for your attention